Search results for "Splitting of prime ideals in Galois extensions"
showing 1 items of 1 documents
Irreducible components of Hurwitz spaces parameterizing Galois coverings of curves of positive genus
2014
Let Y be a smooth, projective, irreducible complex curve. A G-covering p : C → Y is a Galois covering, where C is a smooth, projective, irreducible curve and an isomorphism G ∼ −→ Aut(C/Y ) is fixed. Two G-coverings are equivalent if there is a G-equivariant isomorphism between them. We are concerned with the Hurwitz spaces H n (Y ) and H G n (Y, y0). The first one parameterizes Gequivalence classes of G-coverings of Y branched in n points. The second one, given a point y0 ∈ Y , parameterizes G-equivalence classes of pairs [p : C → Y, z0], where p : C → Y is a G-covering unramified at y0 and z0 ∈ p (y0). When G = Sd one can equivalently consider coverings f : X → Y of degree d with full mon…